Notch: (428)

2

2

Razor Blade

2

2

Total Panels Each Coating System:

16

Image a.

Image c.

Exposure and Measurement
The 16 sectioned panels were taped along the cut edge to minimize rust run-off, then all 32 panels were placed in a programmable cyclic corrosion chamber using a slotted panel rack. The panels were exposed to six cycles of ISO 11997-1 (2005), Cycle B, a standard cycle corrosion test consisting of a combination of neutral salt spray exposure according to ASTM B117/ISO 9227, 100 percent condensing humidity according to ISO 6270-2 CH, drying and dwelling. One full corrosion cycle is a week in duration. Figure 5 shows a typical panel after the six-week exposure. Rusting was observed at the panel hanging hole as well as along the scribe. No other surface rusting or edge rusting was observed on any of the panels.

a.

Conclusions
The variation of the rust creep was surprisingly low as a function of scribe type and operator. The standard formula for calculating rust creep is as follows: Creep = (wc-w)/2, where wc is the average raw creep measurement and w is the original width of the scribe. Once this formula was applied to the raw data shown in Figure 6, the variation in calculated rust creep was only 0.6 mm across all four scribing tools and operators for the electrocoated panels and only 0.4 mm for the powder coated panels.
Other conclusions resulting from this study include:
Tom Ackerson, PE is the laboratory Director at IMR Test Labs, Louisville; he can be reached at [email protected]. Jennifer Breetz is also with IMR Test Labs and can be reached at [email protected]. The authors wish to acknowledge the assistance of the following: Chuck Gault, Max Coatings, Birmingham, Alabama, for providing the coating services; Max Calenberg and Justin Barnes of IMR Test Labs, Louisville, Kentucky, for assistance in sample preparation.

RELATED CONTENT